- betaCDF
double betaCDF(double x, double alpha, double beta)
- betaCDFR
double betaCDFR(double x, double alpha, double beta)
- betaPDF
double betaPDF(double x, double alpha, double beta)
- binomialCDF
double binomialCDF(ulong k, ulong n, double p)
P(K <= k) where K is random variable.
- binomialCDFR
double binomialCDFR(ulong k, ulong n, double p)
P(K >= k) where K is random variable.
- binomialPMF
double binomialPMF(ulong k, ulong n, double p)
- cauchyCDF
double cauchyCDF(double X, double X0 = 0, double gamma = 1)
- cauchyCDFR
double cauchyCDFR(double X, double X0 = 0, double gamma = 1)
- cauchyPDF
double cauchyPDF(double X, double X0 = 0, double gamma = 1)
- chiSquareCDF
double chiSquareCDF(double x, double v)
χ2 distribution function and its complement.
- chiSquareCDFR
double chiSquareCDFR(double x, double v)
- chiSquarePDF
double chiSquarePDF(double x, double v)
- dirichletPDF
double dirichletPDF(X x, A alpha)
The Dirichlet probability density.
- exponentialCDF
double exponentialCDF(double x, double lambda)
- exponentialCDFR
double exponentialCDFR(double x, double lambda)
- exponentialPDF
double exponentialPDF(double x, double lambda)
- fisherCDF
double fisherCDF(double x, double df1, double df2)
- fisherCDFR
double fisherCDFR(double x, double df1, double df2)
The Fisher distribution, its complement, and inverse.
- gammaCDF
double gammaCDF(double x, double rate, double shape)
- gammaCDFR
double gammaCDFR(double x, double rate, double shape)
- gammaPDF
double gammaPDF(double x, double rate, double shape)
- hypergeometricCDF
double hypergeometricCDF(long x, long n1, long n2, long n)
P(X <= x), where X is random variable. Uses either direct summation,
normal or binomial approximation depending on parameters.
- hypergeometricCDFR
double hypergeometricCDFR(ulong x, ulong n1, ulong n2, ulong n)
P(X >= x), where X is random variable.
- hypergeometricPMF
double hypergeometricPMF(long x, long n1, long n2, long n)
- invBetaCDF
double invBetaCDF(double p, double alpha, double beta)
- invBinomialCDF
uint invBinomialCDF(double pVal, uint n, double p)
Returns the value of k for the given p-value, n and p. If p-value does
not exactly map to a value of k, the value for which binomialCDF(k, n, p)
is closest to pVal is used.
- invCauchyCDF
double invCauchyCDF(double p, double X0 = 0, double gamma = 1)
- invChiSquareCDFR
double invChiSquareCDFR(double v, double p)
Inverse of complemented χ2 distribution
- invExponentialCDF
double invExponentialCDF(double p, double lambda)
- invFisherCDFR
double invFisherCDFR(double df1, double df2, double p)
Inverse of complemented Fisher distribution
- invGammaCDF
double invGammaCDF(double p, double rate, double shape)
This just calls invGammaCDFR w/ 1 - p b/c invGammaCDFR is more accurate,
but this function is necessary for consistency.
- invGammaCDFR
double invGammaCDFR(double p, double rate, double shape)
- invLaplaceCDF
double invLaplaceCDF(double p, double mu = 0, double b = 1)
- invNegBinomCDF
ulong invNegBinomCDF(double pVal, ulong n, double p)
- invNormalCDF
double invNormalCDF(double p, double mean = 0, double sd = 1)
Inverse of Normal distribution function
- invPoissonCDF
uint invPoissonCDF(double pVal, double lambda)
Returns the value of k for the given p-value and lambda. If p-val
doesn't exactly map to a value of k, the k for which poissonCDF(k, lambda)
is closest to pVal is used.
- invStudentsTCDF
double invStudentsTCDF(double p, double df)
Inverse of Student's t distribution
*
Given probability p and degrees of freedom df,
finds the argument t such that the one-sided
studentsDistribution(nu,t) is equal to p.
Used to test whether two distributions have the same
standard deviation.
*
- kolmogorovDistrib
double kolmogorovDistrib(immutable double x)
Kolmogorov distribution. Used in Kolmogorov-Smirnov testing.
- laplaceCDF
double laplaceCDF(double X, double mu = 0, double b = 1)
- laplaceCDFR
double laplaceCDFR(double X, double mu = 0, double b = 1)
- laplacePDF
double laplacePDF(double x, double mu = 0, double b = 1)
- logNormalCDF
double logNormalCDF(double x, double mu = 0, double sigma = 1)
- logNormalCDFR
double logNormalCDFR(double x, double mu = 0, double sigma = 1)
- logNormalPDF
double logNormalPDF(double x, double mu = 0, double sigma = 1)
- negBinomCDF
double negBinomCDF(ulong k, ulong n, double p)
Negative binomial distribution.
- negBinomCDFR
double negBinomCDFR(ulong k, ulong n, double p)
Probability that k or more failures precede the nth success.
- negBinomPMF
double negBinomPMF(ulong k, ulong n, double p)
- normalCDF
double normalCDF(double x, double mean = 0, double stdev = 1)
P(X < x) for normal distribution where X is random var.
- normalCDFR
double normalCDFR(double x, double mean = 0, double stdev = 1)
P(X > x) for normal distribution where X is random var.
- normalPDF
double normalPDF(double x, double mean = 0, double sd = 1)
- paramFunctor
ParamFunctor!(distrib) paramFunctor(ParameterTypeTuple!(distrib)[1..$] parameters)
Takes a distribution function (CDF or PDF/PMF) as a template argument, and
parameters as function arguments in the order that they appear in the
function declaration and returns a functor that binds the supplied
parameters to the distribution function. Assumes the non-parameter
argument is the first argument to the distribution function.
- parametrize
double delegate(ParameterTypeTuple!(distrib)[0]) parametrize(ParameterTypeTuple!(distrib)[1..$] parameters)
Takes a distribution function (CDF or PDF/PMF) as a template argument, and
parameters as function arguments in the order that they appear in the
function declaration and returns a delegate that binds the supplied
parameters to the distribution function. Assumes the non-parameter
argument is the first argument to the distribution function.
- poissonCDF
double poissonCDF(ulong k, double lambda)
P(K <= k) where K is r.v.
- poissonCDFR
double poissonCDFR(ulong k, double lambda)
P(K >= k) where K is r.v.
- poissonPMF
double poissonPMF(ulong k, double lambda)
- studentsTCDF
double studentsTCDF(double t, double df)
- studentsTCDFR
double studentsTCDFR(double t, double df)
- studentsTPDF
double studentsTPDF(double t, double df)
- uniformCDF
double uniformCDF(double X, double lower, double upper)
- uniformCDFR
double uniformCDFR(double X, double lower, double upper)
- uniformPDF
double uniformPDF(double X, double lower, double upper)
- weibullCDF
double weibullCDF(double x, double shape, double scale = 1)
- weibullCDFR
double weibullCDFR(double x, double shape, double scale = 1)
- weibullPDF
double weibullPDF(double x, double shape, double scale = 1)
Probability distribution CDFs, PDFs/PMFs, and a few inverse CDFs.