1 /**Generates random samples from a various probability distributions. 2 * These are mostly D ports of the NumPy random number generators.*/ 3 4 /* This library is a D port of a large portion of the Numpy random number 5 * library. A few distributions were excluded because they were too obscure 6 * to be tested properly. They may be included at some point in the future. 7 * 8 * Port to D copyright 2009 David Simcha. 9 * 10 * The original C code is available under the licenses below. No additional 11 * restrictions shall apply to this D translation. Eventually, I will try to 12 * discuss the licensing issues with the original authors of Numpy and 13 * make this sane enough that this module can be included in Phobos without 14 * concern. For now, it's free enough that you can at least use it in 15 * personal projects without any serious issues. 16 * 17 * Main Numpy license: 18 * 19 * Copyright (c) 2005-2009, NumPy Developers. 20 * All rights reserved. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions are 24 * met: 25 * 26 * * Redistributions of source code must retain the above copyright 27 * notice, this list of conditions and the following disclaimer. 28 * 29 * * Redistributions in binary form must reproduce the above 30 * copyright notice, this list of conditions and the following 31 * disclaimer in the documentation and/or other materials provided 32 * with the distribution. 33 * 34 * * Neither the name of the NumPy Developers nor the names of any 35 * contributors may be used to endorse or promote products derived 36 * from this software without specific prior written permission. 37 * 38 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 39 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 40 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 41 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 42 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 44 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 45 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 46 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 47 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 48 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 49 * 50 * distribution.c license: 51 * 52 * Copyright 2005 Robert Kern (robert.kern@gmail.com) 53 * 54 * Permission is hereby granted, free of charge, to any person obtaining a 55 * copy of this software and associated documentation files (the 56 * "Software"), to deal in the Software without restriction, including 57 * without limitation the rights to use, copy, modify, merge, publish, 58 * distribute, sublicense, and/or sell copies of the Software, and to 59 * permit persons to whom the Software is furnished to do so, subject to 60 * the following conditions: 61 * 62 * The above copyright notice and this permission notice shall be included 63 * in all copies or substantial portions of the Software. 64 * 65 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 66 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 67 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 68 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY 69 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 70 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 71 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 72 */ 73 74 /* The implementations of rHypergeometricHyp() and rHypergeometricHrua() 75 * were adapted from Ivan Frohne's rv.py which has this 76 * license: 77 * 78 * Copyright 1998 by Ivan Frohne; Wasilla, Alaska, U.S.A. 79 * All Rights Reserved 80 * 81 * Permission to use, copy, modify and distribute this software and its 82 * documentation for any purpose, free of charge, is granted subject to the 83 * following conditions: 84 * The above copyright notice and this permission notice shall be included in 85 * all copies or substantial portions of the software. 86 * 87 * THE SOFTWARE AND DOCUMENTATION IS PROVIDED WITHOUT WARRANTY OF ANY KIND, 88 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO MERCHANTABILITY, FITNESS 89 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHOR 90 * OR COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM OR DAMAGES IN A CONTRACT 91 * ACTION, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 92 * SOFTWARE OR ITS DOCUMENTATION. 93 */ 94 95 /* References: 96 * 97 * Devroye, Luc. _Non-Uniform Random Variate Generation_. 98 * Springer-Verlag, New York, 1986. 99 * http://cgm.cs.mcgill.ca/~luc/rnbookindex.html 100 * 101 * Kachitvichyanukul, V. and Schmeiser, B. W. Binomial Random Variate 102 * Generation. Communications of the ACM, 31, 2 (February, 1988) 216. 103 * 104 * Hoermann, W. The Transformed Rejection Method for Generating Poisson Random 105 * Variables. Insurance: Mathematics and Economics, (to appear) 106 * http://citeseer.csail.mit.edu/151115.html 107 * 108 * Marsaglia, G. and Tsang, W. W. A Simple Method for Generating Gamma 109 * Variables. ACM Transactions on Mathematical Software, Vol. 26, No. 3, 110 * September 2000, Pages 363-372. 111 */ 112 113 114 /* Unit tests are non-deterministic. They prove that the distributions 115 * are reasonable by using K-S tests and summary stats, but cannot 116 * deterministically prove correctness.*/ 117 118 module dstats.random; 119 120 import std.math, dstats.distrib, std.traits, std.typetuple, 121 std.exception, std.mathspecial, std.array; 122 import std.algorithm : min, max; 123 public import std.random; //For uniform distrib. 124 125 import dstats.alloc, dstats.base; 126 127 version(unittest) { 128 import std.stdio, dstats.tests, dstats.summary, std.range; 129 } 130 131 /**Convenience function to allow one-statement creation of arrays of random 132 * numbers. 133 * 134 * Examples: 135 * --- 136 * // Create an array of 10 random numbers distributed Normal(0, 1). 137 * auto normals = randArray!rNormal(10, 0, 1); 138 * --- 139 */ 140 auto randArray(alias randFun, Args...)(size_t N, auto ref Args args) { 141 alias typeof(randFun(args)) R; 142 return randArray!(R, randFun, Args)(N, args); 143 } 144 145 unittest { 146 // Just check if it compiles. 147 auto nums = randArray!rNormal(5, 0, 1); 148 auto nums2 = randArray!rBinomial(10, 5, 0.5); 149 } 150 151 /**Allows the creation of an array of random numbers with an explicitly 152 * specified type. Useful, for example, when single-precision floats are all 153 * you need. 154 * 155 * Examples: 156 * --- 157 * // Create an array of 10 million floats distributed Normal(0, 1). 158 * float[] normals = randArray!(float, rNormal)(10, 0, 1); 159 * --- 160 */ 161 R[] randArray(R, alias randFun, Args...)(size_t N, auto ref Args args) { 162 auto ret = uninitializedArray!(R[])(N); 163 foreach(ref elem; ret) { 164 elem = randFun(args); 165 } 166 167 return ret; 168 } 169 170 /// 171 struct RandRange(alias randFun, T...) { 172 private: 173 T args; 174 double normData = double.nan; // TLS stuff for normal. 175 typeof(randFun(args)) frontElem; 176 public: 177 enum bool empty = false; 178 179 this(T args) { 180 this.args = args; 181 popFront; 182 } 183 184 @property typeof(randFun(args)) front() { 185 return frontElem; 186 } 187 188 void popFront() { 189 /* This is a kludge to make the contents of this range deterministic 190 * given the state of the underlying random number generator without 191 * a massive redesign. We store the state in this struct and 192 * swap w/ the TLS data for rNormal on each call to popFront. This has to 193 * be done no matter what distribution we're using b/c a lot of others 194 * rely on the normal.*/ 195 auto lastNormPtr = &lastNorm; // Cache ptr once, avoid repeated TLS lookup. 196 auto temp = *lastNormPtr; // Store old state. 197 *lastNormPtr = normData; // Replace it. 198 this.frontElem = randFun(args); 199 normData = *lastNormPtr; 200 *lastNormPtr = temp; 201 } 202 203 @property typeof(this) save() { 204 return this; 205 } 206 } 207 208 /**Turn a random number generator function into an infinite range. 209 * Params is a tuple of the distribution parameters. This is specified 210 * in the same order as when calling the function directly. 211 * 212 * The sequence generated by this range is deterministic and repeatable given 213 * the state of the underlying random number generator. If the underlying 214 * random number generator is explicitly specified, as opposed to using the 215 * default thread-local global RNG, it is copied when the struct is copied. 216 * See below for an example of this behavior. 217 * 218 * Examples: 219 * --- 220 * // Print out some summary statistics for 10,000 Poisson-distributed 221 * // random numbers w/ Poisson parameter 2. 222 * auto gen = Random(unpredictableSeed); 223 * auto pois1k = take(10_000, randRange!rPoisson(2, gen)); 224 * writeln( summary(pois1k) ); 225 * writeln( summary(pois1k) ); // Exact same results as first call. 226 * --- 227 */ 228 RandRange!(randFun, T) randRange(alias randFun, T...)(T params) { 229 alias RandRange!(randFun, T) RT; 230 RT ret; // Bypass the ctor b/c it's screwy. 231 ret.args = params; 232 ret.popFront; 233 return ret; 234 } 235 236 unittest { 237 // The thing to test here is that the results are deterministic given 238 // an underlying RNG. 239 240 { 241 auto norms = take(randRange!rNormal(0, 1, Random(unpredictableSeed)), 99); 242 auto arr1 = array(norms); 243 auto arr2 = array(norms); 244 assert(arr1 == arr2); 245 } 246 247 { 248 auto binomSmall = take(randRange!rBinomial(20, 0.5, Random(unpredictableSeed)), 99); 249 auto arr1 = array(binomSmall); 250 auto arr2 = array(binomSmall); 251 assert(arr1 == arr2); 252 } 253 254 { 255 auto binomLarge = take(randRange!rBinomial(20000, 0.4, Random(unpredictableSeed)), 99); 256 auto arr1 = array(binomLarge); 257 auto arr2 = array(binomLarge); 258 assert(arr1 == arr2); 259 } 260 writeln("Passed RandRange test."); 261 } 262 263 // Thread local data for normal distrib. that is preserved across calls. 264 private static double lastNorm = double.nan; 265 266 /// 267 double rNormal(RGen = Random)(double mean, double sd, ref RGen gen = rndGen) { 268 dstatsEnforce(sd > 0, "Standard deviation must be > 0 for rNormal."); 269 270 double lr = lastNorm; 271 if (!isNaN(lr)) { 272 lastNorm = double.nan; 273 return lr * sd + mean; 274 } 275 276 double x1 = void, x2 = void, r2 = void; 277 do { 278 x1 = uniform(-1.0L, 1.0L, gen); 279 x2 = uniform(-1.0L, 1.0L, gen); 280 r2 = x1 * x1 + x2 * x2; 281 } while (r2 > 1.0L || r2 == 0.0L); 282 double f = sqrt(-2.0L * log(r2) / r2); 283 lastNorm = f * x1; 284 return f * x2 * sd + mean; 285 } 286 287 288 unittest { 289 auto observ = randArray!rNormal(100_000, 0, 1); 290 auto ksRes = ksTest(observ, parametrize!(normalCDF)(0.0L, 1.0L)); 291 auto summ = summary(observ); 292 293 writeln("100k samples from normal(0, 1): K-S P-val: ", ksRes.p); 294 writeln("\tMean Expected: 0 Observed: ", summ.mean); 295 writeln("\tMedian Expected: 0 Observed: ", median(observ)); 296 writeln("\tStdev Expected: 1 Observed: ", summ.stdev); 297 writeln("\tKurtosis Expected: 0 Observed: ", summ.kurtosis); 298 writeln("\tSkewness Expected: 0 Observed: ", summ.skewness); 299 } 300 301 /// 302 double rCauchy(RGen = Random)(double X0, double gamma, ref RGen gen = rndGen) { 303 dstatsEnforce(gamma > 0, "gamma must be > 0 for Cauchy distribution."); 304 305 return (rNormal(0, 1, gen) / rNormal(0, 1, gen)) * gamma + X0; 306 } 307 308 unittest { 309 auto observ = randArray!rCauchy(100_000, 2, 5); 310 auto ksRes = ksTest(observ, parametrize!(cauchyCDF)(2.0L, 5.0L)); 311 312 auto summ = summary(observ); 313 writeln("100k samples from Cauchy(2, 5): K-S P-val: ", ksRes.p); 314 writeln("\tMean Expected: N/A Observed: ", summ.mean); 315 writeln("\tMedian Expected: 2 Observed: ", median(observ)); 316 writeln("\tStdev Expected: N/A Observed: ", summ.stdev); 317 writeln("\tKurtosis Expected: N/A Observed: ", summ.kurtosis); 318 writeln("\tSkewness Expected: N/A Observed: ", summ.skewness); 319 } 320 321 /// 322 double rStudentsT(RGen = Random)(double df, ref RGen gen = rndGen) { 323 dstatsEnforce(df > 0, "Student's T distribution must have >0 degrees of freedom."); 324 325 double N = rNormal(0, 1, gen); 326 double G = stdGamma(df / 2, gen); 327 double X = sqrt(df / 2) * N / sqrt(G); 328 return X; 329 } 330 331 unittest { 332 auto observ = randArray!rStudentsT(100_000, 5); 333 auto ksRes = ksTest(observ, parametrize!(studentsTCDF)(5)); 334 335 auto summ = summary(observ); 336 writeln("100k samples from T(5): K-S P-val: ", ksRes.p); 337 writeln("\tMean Expected: 0 Observed: ", summ.mean); 338 writeln("\tMedian Expected: 0 Observed: ", median(observ)); 339 writeln("\tStdev Expected: 1.2909 Observed: ", summ.stdev); 340 writeln("\tKurtosis Expected: 6 Observed: ", summ.kurtosis); 341 writeln("\tSkewness Expected: 0 Observed: ", summ.skewness); 342 } 343 344 /// 345 double rFisher(RGen = Random)(double df1, double df2, ref RGen gen = rndGen) { 346 dstatsEnforce(df1 > 0 && df2 > 0, 347 "df1 and df2 must be >0 for the Fisher distribution."); 348 349 return (rChiSquare(df1, gen) * df2) / 350 (rChiSquare(df2, gen) * df1); 351 } 352 353 unittest { 354 auto observ = randArray!rFisher(100_000, 5, 7); 355 auto ksRes = ksTest(observ, parametrize!(fisherCDF)(5, 7)); 356 writeln("100k samples from fisher(5, 7): K-S P-val: ", ksRes.p); 357 writeln("\tMean Expected: ", 7.0 / 5, " Observed: ", mean(observ)); 358 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 359 writeln("\tStdev Expected: ?? Observed: ", stdev(observ)); 360 writeln("\tKurtosis Expected: ?? Observed: ", kurtosis(observ)); 361 writeln("\tSkewness Expected: ?? Observed: ", skewness(observ)); 362 delete observ; 363 } 364 365 /// 366 double rChiSquare(RGen = Random)(double df, ref RGen gen = rndGen) { 367 dstatsEnforce(df > 0, "df must be > 0 for chiSquare distribution."); 368 369 return 2.0 * stdGamma(df / 2.0L, gen); 370 } 371 372 unittest { 373 double df = 5; 374 double[] observ = new double[100_000]; 375 foreach(ref elem; observ) 376 elem = rChiSquare(df); 377 auto ksRes = ksTest(observ, parametrize!(chiSquareCDF)(5)); 378 writeln("100k samples from Chi-Square: K-S P-val: ", ksRes.p); 379 writeln("\tMean Expected: ", df, " Observed: ", mean(observ)); 380 writeln("\tMedian Expected: ", df - (2.0L / 3.0L), " Observed: ", median(observ)); 381 writeln("\tStdev Expected: ", sqrt(2 * df), " Observed: ", stdev(observ)); 382 writeln("\tKurtosis Expected: ", 12 / df, " Observed: ", kurtosis(observ)); 383 writeln("\tSkewness Expected: ", sqrt(8 / df), " Observed: ", skewness(observ)); 384 delete observ; 385 } 386 387 /// 388 int rPoisson(RGen = Random)(double lam, ref RGen gen = rndGen) { 389 dstatsEnforce(lam > 0, "lambda must be >0 for Poisson distribution."); 390 391 static int poissonMult(ref RGen gen, double lam) { 392 double U = void; 393 394 double enlam = exp(-lam); 395 int X = 0; 396 double prod = 1.0; 397 while (true) { 398 U = uniform(0.0L, 1.0L, gen); 399 prod *= U; 400 if (prod > enlam) { 401 X += 1; 402 } else { 403 return X; 404 } 405 } 406 assert(0); 407 } 408 409 enum double LS2PI = 0.91893853320467267; 410 enum double TWELFTH = 0.083333333333333333333333; 411 static int poissonPtrs(ref RGen gen, double lam) { 412 int k; 413 double U = void, V = void, us = void; 414 415 double slam = sqrt(lam); 416 double loglam = log(lam); 417 double b = 0.931 + 2.53*slam; 418 double a = -0.059 + 0.02483*b; 419 double invalpha = 1.1239 + 1.1328/(b-3.4); 420 double vr = 0.9277 - 3.6224/(b-2); 421 422 while (true) { 423 U = uniform(-0.5L, 0.5L, gen); 424 V = uniform(0.0L, 1.0L, gen); 425 us = 0.5 - abs(U); 426 k = cast(int) floor((2*a/us + b)*U + lam + 0.43); 427 if ((us >= 0.07) && (V <= vr)) { 428 return k; 429 } 430 if ((k < 0) || ((us < 0.013) && (V > us))) { 431 continue; 432 } 433 if ((log(V) + log(invalpha) - log(a/(us*us)+b)) <= 434 (-lam + k*loglam - logGamma(k+1))) { 435 return k; 436 } 437 } 438 assert(0); 439 } 440 441 442 if (lam >= 10) { 443 return poissonPtrs(gen, lam); 444 } else if (lam == 0) { 445 return 0; 446 } else { 447 return poissonMult(gen, lam); 448 } 449 } 450 451 unittest { 452 double lambda = 15L; 453 int[] observ = new int[100_000]; 454 foreach(ref elem; observ) 455 elem = rPoisson(lambda); 456 writeln("100k samples from poisson(", lambda, "):"); 457 writeln("\tMean Expected: ", lambda, 458 " Observed: ", mean(observ)); 459 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 460 writeln("\tStdev Expected: ", sqrt(lambda), 461 " Observed: ", stdev(observ)); 462 writeln("\tKurtosis Expected: ", 1 / lambda, 463 " Observed: ", kurtosis(observ)); 464 writeln("\tSkewness Expected: ", 1 / sqrt(lambda), 465 " Observed: ", skewness(observ)); 466 delete observ; 467 } 468 469 /// 470 int rBernoulli(RGen = Random)(double P = 0.5, ref RGen gen = rndGen) { 471 dstatsEnforce(P >= 0 && P <= 1, "P must be between 0, 1 for Bernoulli distribution."); 472 473 double pVal = uniform(0.0L, 1.0L, gen); 474 return cast(int) (pVal <= P); 475 } 476 477 private struct BinoState { 478 bool has_binomial; 479 int nsave; 480 double psave; 481 int m; 482 double r,q,fm,p1,xm,xl,xr,c,laml,lamr,p2,p3,p4; 483 double a,u,v,s,F,rho,t,A,nrq,x1,x2,f1,f2,z,z2,w,w2,x; 484 } 485 486 private BinoState* binoState() { 487 // Store BinoState structs on heap rather than directly in TLS. 488 489 static BinoState* stateTLS; 490 auto tlsPtr = stateTLS; 491 if (tlsPtr is null) { 492 tlsPtr = new BinoState; 493 stateTLS = tlsPtr; 494 } 495 return tlsPtr; 496 } 497 498 499 private int rBinomialBtpe(RGen = Random)(int n, double p, ref RGen gen = rndGen) { 500 auto state = binoState; 501 double r,q,fm,p1,xm,xl,xr,c,laml,lamr,p2,p3,p4; 502 double a,u,v,s,F,rho,t,A,nrq,x1,x2,f1,f2,z,z2,w,w2,x; 503 int m,y,k,i; 504 505 if (!(state.has_binomial) || 506 (state.nsave != n) || 507 (state.psave != p)) { 508 /* initialize */ 509 state.nsave = n; 510 state.psave = p; 511 state.has_binomial = 1; 512 state.r = r = min(p, 1.0-p); 513 state.q = q = 1.0 - r; 514 state.fm = fm = n*r+r; 515 state.m = m = cast(int)floor(state.fm); 516 state.p1 = p1 = floor(2.195*sqrt(n*r*q)-4.6*q) + 0.5; 517 state.xm = xm = m + 0.5; 518 state.xl = xl = xm - p1; 519 state.xr = xr = xm + p1; 520 state.c = c = 0.134 + 20.5/(15.3 + m); 521 a = (fm - xl)/(fm-xl*r); 522 state.laml = laml = a*(1.0 + a/2.0); 523 a = (xr - fm)/(xr*q); 524 state.lamr = lamr = a*(1.0 + a/2.0); 525 state.p2 = p2 = p1*(1.0 + 2.0*c); 526 state.p3 = p3 = p2 + c/laml; 527 state.p4 = p4 = p3 + c/lamr; 528 } else { 529 r = state.r; 530 q = state.q; 531 fm = state.fm; 532 m = state.m; 533 p1 = state.p1; 534 xm = state.xm; 535 xl = state.xl; 536 xr = state.xr; 537 c = state.c; 538 laml = state.laml; 539 lamr = state.lamr; 540 p2 = state.p2; 541 p3 = state.p3; 542 p4 = state.p4; 543 } 544 545 /* sigh ... */ 546 Step10: 547 nrq = n*r*q; 548 u = uniform(0.0L, p4, gen); 549 v = uniform(0.0L, 1.0L, gen); 550 if (u > p1) goto Step20; 551 y = cast(int)floor(xm - p1*v + u); 552 goto Step60; 553 554 Step20: 555 if (u > p2) goto Step30; 556 x = xl + (u - p1)/c; 557 v = v*c + 1.0 - fabs(m - x + 0.5)/p1; 558 if (v > 1.0) goto Step10; 559 y = cast(int)floor(x); 560 goto Step50; 561 562 Step30: 563 if (u > p3) goto Step40; 564 y = cast(int)floor(xl + log(v)/laml); 565 if (y < 0) goto Step10; 566 v = v*(u-p2)*laml; 567 goto Step50; 568 569 Step40: 570 y = cast(int)floor(xr - log(v)/lamr); 571 if (y > n) goto Step10; 572 v = v*(u-p3)*lamr; 573 574 Step50: 575 k = cast(int) abs(y - m); 576 if ((k > 20) && (k < ((nrq)/2.0 - 1))) goto Step52; 577 578 s = r/q; 579 a = s*(n+1); 580 F = 1.0; 581 if (m < y) { 582 for (i=m; i<=y; i++) { 583 F *= (a/i - s); 584 } 585 } else if (m > y) { 586 for (i=y; i<=m; i++) { 587 F /= (a/i - s); 588 } 589 } else { 590 if (v > F) goto Step10; 591 goto Step60; 592 } 593 594 Step52: 595 rho = (k/(nrq))*((k*(k/3.0 + 0.625) + 0.16666666666666666)/nrq + 0.5); 596 t = -k*k/(2*nrq); 597 A = log(v); 598 if (A < (t - rho)) goto Step60; 599 if (A > (t + rho)) goto Step10; 600 601 x1 = y+1; 602 f1 = m+1; 603 z = n+1-m; 604 w = n-y+1; 605 x2 = x1*x1; 606 f2 = f1*f1; 607 z2 = z*z; 608 w2 = w*w; 609 if (A > (xm*log(f1/x1) 610 + (n-m+0.5)*log(z/w) 611 + (y-m)*log(w*r/(x1*q)) 612 + (13680.-(462.-(132.-(99.-140./f2)/f2)/f2)/f2)/f1/166320. 613 + (13680.-(462.-(132.-(99.-140./z2)/z2)/z2)/z2)/z/166320. 614 + (13680.-(462.-(132.-(99.-140./x2)/x2)/x2)/x2)/x1/166320. 615 + (13680.-(462.-(132.-(99.-140./w2)/w2)/w2)/w2)/w/166320.)) { 616 goto Step10; 617 } 618 619 Step60: 620 if (p > 0.5) { 621 y = n - y; 622 } 623 624 return y; 625 } 626 627 private int rBinomialInversion(RGen = Random)(int n, double p, ref RGen gen = rndGen) { 628 auto state = binoState; 629 double q, qn, np, px, U; 630 int X, bound; 631 632 if (!(state.has_binomial) || 633 (state.nsave != n) || 634 (state.psave != p)) { 635 state.nsave = n; 636 state.psave = p; 637 state.has_binomial = 1; 638 state.q = q = 1.0 - p; 639 state.r = qn = exp(n * log(q)); 640 state.c = np = n*p; 641 state.m = bound = cast(int) min(n, np + 10.0*sqrt(np*q + 1)); 642 } else { 643 q = state.q; 644 qn = state.r; 645 np = state.c; 646 bound = cast(int) state.m; 647 } 648 X = 0; 649 px = qn; 650 U = uniform(0.0L, 1.0L, gen); 651 while (U > px) { 652 X++; 653 if (X > bound) { 654 X = 0; 655 px = qn; 656 U = uniform(0.0L, 1.0L, gen); 657 } else { 658 U -= px; 659 px = ((n-X+1) * p * px)/(X*q); 660 } 661 } 662 return X; 663 } 664 665 /// 666 int rBinomial(RGen = Random)(int n, double p, ref RGen gen = rndGen) { 667 dstatsEnforce(n >= 0, "n must be >= 0 for binomial distribution."); 668 dstatsEnforce(p >= 0 && p <= 1, "p must be between 0, 1 for binomial distribution."); 669 670 if (p <= 0.5) { 671 if (p*n <= 30.0) { 672 return rBinomialInversion(n, p, gen); 673 } else { 674 return rBinomialBtpe(n, p, gen); 675 } 676 } else { 677 double q = 1.0-p; 678 if (q*n <= 30.0) { 679 return n - rBinomialInversion(n, q, gen); 680 } else { 681 return n - rBinomialBtpe(n, q, gen); 682 } 683 } 684 } 685 686 unittest { 687 void testBinom(int n, double p) { 688 int[] observ = new int[100_000]; 689 foreach(ref elem; observ) 690 elem = rBinomial(n, p); 691 writeln("100k samples from binom.(", n, ", ", p, "):"); 692 writeln("\tMean Expected: ", n * p, 693 " Observed: ", mean(observ)); 694 writeln("\tMedian Expected: ", n * p, " Observed: ", median(observ)); 695 writeln("\tStdev Expected: ", sqrt(n * p * (1 - p)), 696 " Observed: ", stdev(observ)); 697 writeln("\tKurtosis Expected: ", (1 - 6 * p * (1 - p)) / (n * p * (1 - p)), 698 " Observed: ", kurtosis(observ)); 699 writeln("\tSkewness Expected: ", (1 - 2 * p) / (sqrt(n * p * (1 - p))), 700 " Observed: ", skewness(observ)); 701 delete observ; 702 } 703 704 testBinom(1000, 0.6); 705 testBinom(3, 0.7); 706 } 707 708 private int hypergeoHyp(RGen = Random)(int good, int bad, int sample, ref RGen gen = rndGen) { 709 int Z = void; 710 double U = void; 711 712 int d1 = bad + good - sample; 713 double d2 = cast(double)min(bad, good); 714 715 double Y = d2; 716 int K = sample; 717 while (Y > 0.0) { 718 U = uniform(0.0L, 1.0L, gen); 719 Y -= cast(int)floor(U + Y/(d1 + K)); 720 K--; 721 if (K == 0) break; 722 } 723 Z = cast(int)(d2 - Y); 724 if (good > bad) Z = sample - Z; 725 return Z; 726 } 727 728 private enum double D1 = 1.7155277699214135; 729 private enum double D2 = 0.8989161620588988; 730 private int hypergeoHrua(RGen = Random)(int good, int bad, int sample, ref RGen gen = rndGen) { 731 int Z = void; 732 double T = void, W = void, X = void, Y = void; 733 734 int mingoodbad = min(good, bad); 735 int popsize = good + bad; 736 int maxgoodbad = max(good, bad); 737 int m = min(sample, popsize - sample); 738 double d4 = (cast(double)mingoodbad) / popsize; 739 double d5 = 1.0 - d4; 740 double d6 = m*d4 + 0.5; 741 double d7 = sqrt((popsize - m) * sample * d4 *d5 / (popsize-1) + 0.5); 742 double d8 = D1*d7 + D2; 743 int d9 = cast(int)floor(cast(double)((m+1)*(mingoodbad+1))/(popsize+2)); 744 double d10 = (logGamma(d9+1) + logGamma(mingoodbad-d9+1) + logGamma(m-d9+1) + 745 logGamma(maxgoodbad-m+d9+1)); 746 double d11 = min(min(m, mingoodbad)+1.0, floor(d6+16*d7)); 747 /* 16 for 16-decimal-digit precision in D1 and D2 */ 748 749 while (true) { 750 X = uniform(0.0L, 1.0L, gen); 751 Y = uniform(0.0L, 1.0L, gen); 752 W = d6 + d8*(Y- 0.5)/X; 753 754 /* fast rejection: */ 755 if ((W < 0.0) || (W >= d11)) continue; 756 757 Z = cast(int)floor(W); 758 T = d10 - (logGamma(Z+1) + logGamma(mingoodbad-Z+1) + logGamma(m-Z+1) + 759 logGamma(maxgoodbad-m+Z+1)); 760 761 /* fast acceptance: */ 762 if ((X*(4.0-X)-3.0) <= T) break; 763 764 /* fast rejection: */ 765 if (X*(X-T) >= 1) continue; 766 767 if (2.0*log(X) <= T) break; /* acceptance */ 768 } 769 770 /* this is a correction to HRUA* by Ivan Frohne in rv.py */ 771 if (good > bad) Z = m - Z; 772 773 /* another fix from rv.py to allow sample to exceed popsize/2 */ 774 if (m < sample) Z = good - Z; 775 776 return Z; 777 } 778 779 /// 780 int rHypergeometric(RGen = Random)(int n1, int n2, int n, ref RGen gen = rndGen) { 781 dstatsEnforce(n <= n1 + n2, "n must be <= n1 + n2 for hypergeometric distribution."); 782 dstatsEnforce(n1 >= 0 && n2 >= 0 && n >= 0, 783 "n, n1, n2 must be >= 0 for hypergeometric distribution."); 784 785 alias n1 good; 786 alias n2 bad; 787 alias n sample; 788 if (sample > 10) { 789 return hypergeoHrua(good, bad, sample, gen); 790 } else { 791 return hypergeoHyp(good, bad, sample, gen); 792 } 793 } 794 795 unittest { 796 797 static double hyperStdev(int n1, int n2, int n) { 798 return sqrt(cast(double) n * (cast(double) n1 / (n1 + n2)) 799 * (1 - cast(double) n1 / (n1 + n2)) * (n1 + n2 - n) / (n1 + n2 - 1)); 800 } 801 802 static double hyperSkew(double n1, double n2, double n) { 803 double N = n1 + n2; 804 alias n1 m; 805 double numer = (N - 2 * m) * sqrt(N - 1) * (N - 2 * n); 806 double denom = sqrt(n * m * (N - m) * (N - n)) * (N - 2); 807 return numer / denom; 808 } 809 810 void testHyper(int n1, int n2, int n) { 811 int[] observ = new int[100_000]; 812 foreach(ref elem; observ) 813 elem = rHypergeometric(n1, n2, n); 814 auto ksRes = ksTest(observ, parametrize!(hypergeometricCDF)(n1, n2, n)); 815 writeln("100k samples from hypergeom.(", n1, ", ", n2, ", ", n, "):"); 816 writeln("\tMean Expected: ", n * cast(double) n1 / (n1 + n2), 817 " Observed: ", mean(observ)); 818 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 819 writeln("\tStdev Expected: ", hyperStdev(n1, n2, n), 820 " Observed: ", stdev(observ)); 821 writeln("\tKurtosis Expected: ?? Observed: ", kurtosis(observ)); 822 writeln("\tSkewness Expected: ", hyperSkew(n1, n2, n), " Observed: ", skewness(observ)); 823 delete observ; 824 } 825 826 testHyper(4, 5, 2); 827 testHyper(120, 105, 70); 828 } 829 830 private int rGeomSearch(RGen = Random)(double p, ref RGen gen = rndGen) { 831 int X = 1; 832 double sum = p, prod = p; 833 double q = 1.0 - p; 834 double U = uniform(0.0L, 1.0L, gen); 835 while (U > sum) { 836 prod *= q; 837 sum += prod; 838 X++; 839 } 840 return X; 841 } 842 843 private int rGeomInvers(RGen = Random)(double p, ref RGen gen = rndGen) { 844 return cast(int)ceil(log(1.0-uniform(0.0L, 1.0L, gen))/log(1.0-p)); 845 } 846 847 int rGeometric(RGen = Random)(double p, ref RGen gen = rndGen) { 848 dstatsEnforce(p >= 0 && p <= 1, "p must be between 0, 1 for geometric distribution."); 849 850 if (p >= 0.333333333333333333333333) { 851 return rGeomSearch(p, gen); 852 } else { 853 return rGeomInvers(p, gen); 854 } 855 } 856 857 unittest { 858 859 void testGeom(double p) { 860 int[] observ = new int[100_000]; 861 foreach(ref elem; observ) 862 elem = rGeometric(p); 863 writeln("100k samples from geometric.(", p, "):"); 864 writeln("\tMean Expected: ", 1 / p, 865 " Observed: ", mean(observ)); 866 writeln("\tMedian Expected: ", ceil(-log(2) / log(1 - p)), 867 " Observed: ", median(observ)); 868 writeln("\tStdev Expected: ", sqrt((1 - p) / (p * p)), 869 " Observed: ", stdev(observ)); 870 writeln("\tKurtosis Expected: ", 6 + (p * p) / (1 - p), 871 " Observed: ", kurtosis(observ)); 872 writeln("\tSkewness Expected: ", (2 - p) / sqrt(1 - p), 873 " Observed: ", skewness(observ)); 874 delete observ; 875 } 876 877 testGeom(0.1); 878 testGeom(0.74); 879 880 } 881 882 /// 883 int rNegBinom(RGen = Random)(double n, double p, ref RGen gen = rndGen) { 884 dstatsEnforce(n >= 0, "n must be >= 0 for negative binomial distribution."); 885 dstatsEnforce(p >= 0 && p <= 1, 886 "p must be between 0, 1 for negative binomial distribution."); 887 888 double Y = stdGamma(n, gen); 889 Y *= (1 - p) / p; 890 return rPoisson(Y, gen); 891 } 892 893 unittest { 894 Random gen; 895 gen.seed(unpredictableSeed); 896 double p = 0.3L; 897 int n = 30; 898 int[] observ = new int[100_000]; 899 foreach(ref elem; observ) 900 elem = rNegBinom(n, p); 901 writeln("100k samples from neg. binom.(", n,", ", p, "):"); 902 writeln("\tMean Expected: ", n * (1 - p) / p, 903 " Observed: ", mean(observ)); 904 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 905 writeln("\tStdev Expected: ", sqrt(n * (1 - p) / (p * p)), 906 " Observed: ", stdev(observ)); 907 writeln("\tKurtosis Expected: ", (6 - p * (6 - p)) / (n * (1 - p)), 908 " Observed: ", kurtosis(observ)); 909 writeln("\tSkewness Expected: ", (2 - p) / sqrt(n * (1 - p)), 910 " Observed: ", skewness(observ)); 911 delete observ; 912 } 913 914 /// 915 double rLaplace(RGen = Random)(double mu = 0, double b = 1, ref RGen gen = rndGen) { 916 dstatsEnforce(b > 0, "b must be > 0 for Laplace distribution."); 917 918 double p = uniform(0.0L, 1.0L, gen); 919 return invLaplaceCDF(p, mu, b); 920 } 921 922 unittest { 923 Random gen; 924 gen.seed(unpredictableSeed); 925 double[] observ = new double[100_000]; 926 foreach(ref elem; observ) 927 elem = rLaplace(); 928 auto ksRes = ksTest(observ, parametrize!(laplaceCDF)(0.0L, 1.0L)); 929 writeln("100k samples from Laplace(0, 1): K-S P-val: ", ksRes.p); 930 writeln("\tMean Expected: 0 Observed: ", mean(observ)); 931 writeln("\tMedian Expected: 0 Observed: ", median(observ)); 932 writeln("\tStdev Expected: 1.414 Observed: ", stdev(observ)); 933 writeln("\tKurtosis Expected: 3 Observed: ", kurtosis(observ)); 934 writeln("\tSkewness Expected: 0 Observed: ", skewness(observ)); 935 delete observ; 936 } 937 938 /// 939 double rExponential(RGen = Random)(double lambda, ref RGen gen = rndGen) { 940 dstatsEnforce(lambda > 0, "lambda must be > 0 for exponential distribution."); 941 942 double p = uniform(0.0L, 1.0L, gen); 943 return -log(p) / lambda; 944 } 945 946 unittest { 947 double[] observ = new double[100_000]; 948 foreach(ref elem; observ) 949 elem = rExponential(2.0L); 950 auto ksRes = ksTest(observ, parametrize!(gammaCDF)(2, 1)); 951 writeln("100k samples from exponential(2): K-S P-val: ", ksRes.p); 952 writeln("\tMean Expected: 0.5 Observed: ", mean(observ)); 953 writeln("\tMedian Expected: 0.3465 Observed: ", median(observ)); 954 writeln("\tStdev Expected: 0.5 Observed: ", stdev(observ)); 955 writeln("\tKurtosis Expected: 6 Observed: ", kurtosis(observ)); 956 writeln("\tSkewness Expected: 2 Observed: ", skewness(observ)); 957 delete observ; 958 } 959 960 private double stdGamma(RGen = Random)(double shape, ref RGen gen) { 961 double b = void, c = void; 962 double U = void, V = void, X = void, Y = void; 963 964 if (shape == 1.0) { 965 return rExponential(1.0, gen); 966 } else if (shape < 1.0) { 967 for (;;) { 968 U = uniform(0.0L, 1.0, gen); 969 V = rExponential(1.0, gen); 970 if (U <= 1.0 - shape) { 971 X = pow(U, 1.0/shape); 972 if (X <= V) { 973 return X; 974 } 975 } else { 976 Y = -log((1-U)/shape); 977 X = pow(1.0 - shape + shape*Y, 1./shape); 978 if (X <= (V + Y)) { 979 return X; 980 } 981 } 982 } 983 } else { 984 b = shape - 1./3.; 985 c = 1./sqrt(9*b); 986 for (;;) { 987 do { 988 X = rNormal(0.0L, 1.0L, gen); 989 V = 1.0 + c*X; 990 } while (V <= 0.0); 991 992 V = V*V*V; 993 U = uniform(0.0L, 1.0L, gen); 994 if (U < 1.0 - 0.0331*(X*X)*(X*X)) return (b*V); 995 if (log(U) < 0.5*X*X + b*(1. - V + log(V))) return (b*V); 996 } 997 } 998 } 999 1000 /// 1001 double rGamma(RGen = Random)(double a, double b, ref RGen gen = rndGen) { 1002 dstatsEnforce(a > 0, "a must be > 0 for gamma distribution."); 1003 dstatsEnforce(b > 0, "b must be > 0 for gamma distribution."); 1004 1005 return stdGamma(b, gen) / a; 1006 } 1007 1008 unittest { 1009 double[] observ = new double[100_000]; 1010 foreach(ref elem; observ) 1011 elem = rGamma(2.0L, 3.0L); 1012 auto ksRes = ksTest(observ, parametrize!(gammaCDF)(2, 3)); 1013 writeln("100k samples from gamma(2, 3): K-S P-val: ", ksRes.p); 1014 writeln("\tMean Expected: 1.5 Observed: ", mean(observ)); 1015 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 1016 writeln("\tStdev Expected: 0.866 Observed: ", stdev(observ)); 1017 writeln("\tKurtosis Expected: 2 Observed: ", kurtosis(observ)); 1018 writeln("\tSkewness Expected: 1.15 Observed: ", skewness(observ)); 1019 delete observ; 1020 } 1021 1022 /// 1023 double rBeta(RGen = Random)(double a, double b, ref RGen gen = rndGen) { 1024 dstatsEnforce(a > 0, "a must be > 0 for beta distribution."); 1025 dstatsEnforce(b > 0, "b must be > 0 for beta distribution."); 1026 1027 double Ga = void, Gb = void; 1028 1029 if ((a <= 1.0) && (b <= 1.0)) { 1030 double U, V, X, Y; 1031 /* Use Jonk's algorithm */ 1032 1033 while (1) { 1034 U = uniform(0.0L, 1.0L, gen); 1035 V = uniform(0.0L, 1.0L, gen); 1036 X = pow(U, 1.0/a); 1037 Y = pow(V, 1.0/b); 1038 1039 if ((X + Y) <= 1.0) { 1040 return X / (X + Y); 1041 } 1042 } 1043 } else { 1044 Ga = stdGamma(a, gen); 1045 Gb = stdGamma(b, gen); 1046 return Ga/(Ga + Gb); 1047 } 1048 assert(0); 1049 } 1050 1051 unittest { 1052 double delegate(double) paramBeta(double a, double b) { 1053 double parametrizedBeta(double x) { 1054 return betaIncomplete(a, b, x); 1055 } 1056 return ¶metrizedBeta; 1057 } 1058 1059 static double betaStdev(double a, double b) { 1060 return sqrt(a * b / ((a + b) * (a + b) * (a + b + 1))); 1061 } 1062 1063 static double betaSkew(double a, double b) { 1064 auto numer = 2 * (b - a) * sqrt(a + b + 1); 1065 auto denom = (a + b + 2) * sqrt(a * b); 1066 return numer / denom; 1067 } 1068 1069 static double betaKurtosis(double a, double b) { 1070 double numer = a * a * a - a * a * (2 * b - 1) + b * b * (b + 1) - 2 * a * b * (b + 2); 1071 double denom = a * b * (a + b + 2) * (a + b + 3); 1072 return 6 * numer / denom; 1073 } 1074 1075 void testBeta(double a, double b) { 1076 double[] observ = new double[100_000]; 1077 foreach(ref elem; observ) 1078 elem = rBeta(a, b); 1079 auto ksRes = ksTest(observ, paramBeta(a, b)); 1080 auto summ = summary(observ); 1081 writeln("100k samples from beta(", a, ", ", b, "): K-S P-val: ", ksRes.p); 1082 writeln("\tMean Expected: ", a / (a + b), " Observed: ", summ.mean); 1083 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 1084 writeln("\tStdev Expected: ", betaStdev(a, b), " Observed: ", summ.stdev); 1085 writeln("\tKurtosis Expected: ", betaKurtosis(a, b), " Observed: ", summ.kurtosis); 1086 writeln("\tSkewness Expected: ", betaSkew(a, b), " Observed: ", summ.skewness); 1087 delete observ; 1088 } 1089 1090 testBeta(0.5, 0.7); 1091 testBeta(5, 3); 1092 } 1093 1094 /// 1095 double rLogistic(RGen = Random)(double loc, double scale, ref RGen gen = rndGen) { 1096 dstatsEnforce(scale > 0, "scale must be > 0 for logistic distribution."); 1097 1098 double U = uniform(0.0L, 1.0L, gen); 1099 return loc + scale * log(U/(1.0 - U)); 1100 } 1101 1102 unittest { 1103 double[] observ = new double[100_000]; 1104 foreach(ref elem; observ) 1105 elem = rLogistic(2.0L, 3.0L); 1106 auto ksRes = ksTest(observ, parametrize!(logisticCDF)(2, 3)); 1107 writeln("100k samples from logistic(2, 3): K-S P-val: ", ksRes.p); 1108 writeln("\tMean Expected: 2 Observed: ", mean(observ)); 1109 writeln("\tMedian Expected: 2 Observed: ", median(observ)); 1110 writeln("\tStdev Expected: ", PI * PI * 3, " Observed: ", stdev(observ)); 1111 writeln("\tKurtosis Expected: 1.2 Observed: ", kurtosis(observ)); 1112 writeln("\tSkewness Expected: 0 Observed: ", skewness(observ)); 1113 delete observ; 1114 } 1115 1116 /// 1117 double rLogNormal(RGen = Random)(double mu, double sigma, ref RGen gen = rndGen) { 1118 dstatsEnforce(sigma > 0, "sigma must be > 0 for log-normal distribution."); 1119 1120 return exp(rNormal(mu, sigma, gen)); 1121 } 1122 1123 unittest { 1124 auto observ = randArray!rLogNormal(100_000, -2, 1); 1125 auto ksRes = ksTest(observ, paramFunctor!(logNormalCDF)(-2, 1)); 1126 1127 auto summ = summary(observ); 1128 writeln("100k samples from log-normal(-2, 1): K-S P-val: ", ksRes.p); 1129 writeln("\tMean Expected: ", exp(-1.5), " Observed: ", summ.mean); 1130 writeln("\tMedian Expected: ", exp(-2.0L), " Observed: ", median(observ)); 1131 writeln("\tStdev Expected: ", sqrt((exp(1.) - 1) * exp(-4.0L + 1)), 1132 " Observed: ", summ.stdev); 1133 writeln("\tKurtosis Expected: ?? Observed: ", summ.kurtosis); 1134 writeln("\tSkewness Expected: ", (exp(1.) + 2) * sqrt(exp(1.) - 1), 1135 " Observed: ", summ.skewness); 1136 } 1137 1138 /// 1139 double rWeibull(RGen = Random)(double shape, double scale = 1, ref RGen gen = rndGen) { 1140 dstatsEnforce(shape > 0, "shape must be > 0 for weibull distribution."); 1141 dstatsEnforce(scale > 0, "scale must be > 0 for weibull distribution."); 1142 1143 return pow(rExponential(1, gen), 1. / shape) * scale; 1144 } 1145 1146 unittest { 1147 double[] observ = new double[100_000]; 1148 foreach(ref elem; observ) 1149 elem = rWeibull(2.0L, 3.0L); 1150 auto ksRes = ksTest(observ, parametrize!(weibullCDF)(2.0, 3.0)); 1151 writeln("100k samples from weibull(2, 3): K-S P-val: ", ksRes.p); 1152 delete observ; 1153 } 1154 1155 /// 1156 double rWald(RGen = Random)(double mu, double lambda, ref RGen gen = rndGen) { 1157 dstatsEnforce(mu > 0, "mu must be > 0 for Wald distribution."); 1158 dstatsEnforce(lambda > 0, "lambda must be > 0 for Wald distribution."); 1159 1160 alias mu mean; 1161 alias lambda scale; 1162 1163 double mu_2l = mean / (2*scale); 1164 double Y = rNormal(0, 1, gen); 1165 Y = mean*Y*Y; 1166 double X = mean + mu_2l*(Y - sqrt(4*scale*Y + Y*Y)); 1167 double U = uniform(0.0L, 1.0L, gen); 1168 if (U <= mean/(mean+X)) { 1169 return X; 1170 } else 1171 1172 { 1173 return mean*mean/X; 1174 } 1175 } 1176 1177 unittest { 1178 auto observ = randArray!rWald(100_000, 4, 7); 1179 auto ksRes = ksTest(observ, parametrize!(waldCDF)(4, 7)); 1180 1181 auto summ = summary(observ); 1182 writeln("100k samples from wald(4, 7): K-S P-val: ", ksRes.p); 1183 writeln("\tMean Expected: ", 4, " Observed: ", summ.mean); 1184 writeln("\tMedian Expected: ?? Observed: ", median(observ)); 1185 writeln("\tStdev Expected: ", sqrt(64.0 / 7), " Observed: ", summ.stdev); 1186 writeln("\tKurtosis Expected: ", 15.0 * 4 / 7, " Observed: ", summ.kurtosis); 1187 writeln("\tSkewness Expected: ", 3 * sqrt(4.0 / 7), " Observed: ", summ.skewness); 1188 } 1189 1190 /// 1191 double rRayleigh(RGen = Random)(double mode, ref RGen gen = rndGen) { 1192 dstatsEnforce(mode > 0, "mode must be > 0 for Rayleigh distribution."); 1193 1194 return mode*sqrt(-2.0 * log(1.0 - uniform(0.0L, 1.0L, gen))); 1195 } 1196 1197 unittest { 1198 auto observ = randArray!rRayleigh(100_000, 3); 1199 auto ksRes = ksTest(observ, parametrize!(rayleighCDF)(3)); 1200 writeln("100k samples from rayleigh(3): K-S P-val: ", ksRes.p); 1201 } 1202 1203 deprecated { 1204 alias rNorm = rNormal; 1205 alias rLogNorm = rLogNormal; 1206 alias rStudentT = rStudentsT; 1207 }